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Abstract. The effective I/O bandwidth benchmark (b_eff-io) covers two
goals: (1) to achieve a characteristic average number for the I/O band-
width achievable with parallel MPI-I/O applications, and (2) to get de-
tailed information about several access patterns and buffer lengths. The
benchmark examines "first write", "rewrite" and "read" access, strided
(individual and shared pointers) and segmented collective patterns 
one file per application and non-collective access to one file per process.
The number of parallel accessing processes is also varied and wellformed
I/O is compared with non-wellformed. On systems, meeting the rule that
the total memory can be written to disk in 10 minutes, the benchmark
should not need more than 15 minutes for a first pass of all patterns. The
benchmark is designed analogously to the effective bandwidth bench-
mark for message passing (b_eff) that characterizes the message passing
capabilities of a system in a few minutes. First results of the b_effho
benchmark are given for IBM SP and Cray T3E systems and compared
with existing benchmarks based on parallel Posix-I/O.

Keywords. MPI, File-I/O, Disk-I/O, Benchmark, Bandwidth.

1 Introduction

Most parallel I/O benchmarks and benchmarking studies characterize the hard-
ware and file system performance limits [2, 4-6]. Often, they focus on determining
under which conditions the maximal file system performance can be reached on
a specific platform. Such results can guide the user in choosing an optimal access
pattern for a given machine and file system, but do not generally consider the
needs of the application over the needs of the file system.

Our approach begins with consideration of the possible I/O requests of par-
allel applications. To formulate such I/O requests, the MPI Forum has stan-
dardized the MPI-I/O interface [7]. Major goals of this standardization are to
express the user’s needs and to allow optimal implementations of the MPI-I/O
interface on all platforms [3, 8, 11,12]. Based on this background, the effective
I/O bandwidth benchmark (b_effAo) should measure different access patterns,
report these detailed results, and should calculate an average I/O bandwidth
value that characterizes the whole system. This goal is analogue to the Linpack
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value reported in TOP500 [16] that characterizes the computational speed of a
system, and also to the effective bandwidth benchmark (b_eft), that characterizes
the communication network of a distributed system ]9,14, 15].

A major difference between b_eft and b_effAo is the magnitude of the band-
width. On well-balanced systems in high performance computing we expect a
I/O bandwidth which allows for writing or reading the total memory in approx-
imately 10 minutes. For the communication bandwidth, the b_eft benchmark
shows, that the total memory can be communicated in 3.2 seconds on a Cray
T3E with 512 processors and in 13.6 seconds on a 24 processor Hitachi SR 8000.
An I/O benchmark measures the bandwidth of data transfers between memory
and disk. Such measurements are (1) highly influenced by buffering mechanisms
of the underlying I/O middleware and filesystem details, and (2) high I/O band-
width on disk requires, especially on striped filesystems, that a large amount of
data must be transferred between such buffers and disk. Therefore a benchmark
must ensure that a sufficient amount of data is transfered between disk and the
application’s membry. The communication benchmark b_eft can give detailed an-
swers in about 2 minutes. Later we shall see that b_eff_io, our I/O counterpart,
needs at least 15 minutes to get a first answer.

2 Multidimensional Benchmarking Space

Often, benchmark calculations sample only a small subspace of a multidimen-
sional parameter space. One extreme example is to measure only one point, e.g.
a communication bandwidth between two processors using a ping-pong commu-
nication pattern with 8 Mbyte messages, repeated 100 times. For I/O bench-
marking, a huge number of parameters exist. We divide the parameters into 6
general categories. At the end of each category in the following list, a first hint
about handling the aspects in b_effAo is given. The detailed definition of b_eff_io
is shown in section 4.

1. Application parameters are (a) the size of contiguous chunks in the memory,
(b) the size of contiguous chunks on disk, which may be different in the
case of scatter/gather access patterns, (c) the number of such contiguous
chunks that are accessed with each call to a read or write routine, (d) the
file size, (e) the distribution scheme, e.g. segmented or long strides, short
strides, random or regular, or separate files for each node, and (f) whether
or not the chunk size and Mignment are wellformed, e.g. a power of two or
a multiple of the striping unit. For b_effAo, 36 different patterns are used to
cover most of these aspects.

2. Usage aspects are (a) how many processes are used and (b) how many 
allel processors and threads are used for each process. To keep these aspects
outside of the benchmark, b_effJo will be defined as a Ihaximum over these
aspects and one must report the usage parameters used to achieve the max-
imum.

3. The major programming interface parameter is specification of which I/O
interface is used: Posix I/O buffered or raw, special filesystem I/O of the
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vendors filesytem, or MPI-I/O. In this benchmark, we use only MPI-I/O,
because it should be a portable interface of an optimal implementation on
top of Posix I/O or the special filesystem I/O.

4. MPI-I/O defines the following orthogonal aspects: (a) access methods, i.e.,
first writing of a file, rewriting or reading, (b) positioning method, i.e. explicit
offsets, individual or shared file pointers, (c) coordination, i.e., accessing
the file collectively by (all) processes or noncollectively, (d) synchronism,
i.e., blocking or nonblocking. Additional aspects are: (e) whether or not
the files are open unique, i.e., that the file will not be concurrently opened
elsewhere, and (f) which consistency is chosen for conflicting accesses, i.e.,
whether or not atomic mode is set. For b_effAo there is no overlap of I/O
and computation, therefore only blocking calls are used. Because there should
not be a significant difference between the efficiency of using explicit offsets
or individual file pointers, only the individual and shared file pointers are
benchmarked. With regard to the additional aspects, unique and nonatomic
are used.

5. Filesystem parameters are (a) how many nodes or processors are used as I/O
servers, (b) how much memory is used as bufferspace on each application
node, (c) the disk block size, (d) the striping unit size, and (e) the 
of parallel striping devices that are used. These aspects are also outside the
scope of b_eff_io. Any usage of non-default parameters must be reported.

6. Additional benchmarking aspects are (a) repetition factors, (b) how to 
culate b_effAo, based on a subspace of the parameter space defined above
using maximum, average, weighted average or logarithmic averages.

To reduce benchmarking time to an acceptable amount, one can normally only
measure I/O performance at a few grid points of a 1-5 dimensional subspace.
To analyze more than 5 aspects, usually more than one subspace is examined.
Often, the common area of these subspaces is chosen as the intersection of the
area of best results of the other subspaces. For example in [5], the subspace vary-
ing the number of servers is obtained with segmented access patterns, and with
well-chosen block sizes and client:server ratios. Defining such optimal subspaces
can be highly system-dependent and may therefore not be as appropriate for a
b_effAo designed for a variety of systems. For the design of b_eff_io, it is impor-
tant to choose the grid points based more on general application needs than on
optimal system behavior.

3 Criteria

The benchmark b_effAo should characterize the I/O capabilities of the system.
Should we use, therefore, only access patterns, that promise a maximum band-
width? No, but there should be a good chance that an optimized implementation
of MPLI/O should be able to achieve a high bandwidth. This means that we
should measure patterns that can be recommended to application developers.

An important criterion is that the b_eff_io benchmark should only need about
10 to 15 minutes. For first measurements, it need not run on an empty system
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as long as concurrently running other applications do not use a significant part
of the I/O bandwidth of the system. Normally, the full I/O bandwidth can be
reached by using less than the total number of available processors or SMP
nodes. In contrast, the communication benchmark b_eft should not require more
than 2 minutes, but it must run on the whole system to compute the aggregate
communication bandwidth.

Based on the rule mentioned in the introduction and expecting that MPI-
I/O will offer at least 50 percent of the hardware I/O bandwidth, we can expect
that a 10 minute b_eff_io run will transfer about half of the total memory of
the benchmarked system. A first test on a T3E900-512 shows that based on the
pattern-mix, only about the third of this theoretical value is transferred.

As third important criterion, we want to be able to compare different common
access patterns.

4 Definition of the Effective I/O Bandwidth

The effective I/O bandwidth benchmark measures the following aspects:

- a set of partitions,
- the access methods initial write, rewrite, and read,
- the pattern types

(0) strided collective access, scattering large chunks in memory to/from disk,
(1) strided collective access, but one read or write call per disk chunk,
(2) noncollective access to one file per MPI process,
(3) same as (2), but the individual files are assembled to one segmented file,
(4) same as (3), but the access to the segmented file is done with collective
routines;
for each pattern type, an individual file is used.

- the contiguous chunk size is chosen wellformed, i.e., as a power of 2, and
non-weU/ormed by adding 8 bytes to the wellformed size,

- different chunk sizes, mainly 1 kB, 32 kB, 1 MB, and the maximum of 2 MB
and 1/128 of the memory size of a node executing one MPI process.

The total list of patterns is shown in Tab. 1. The column "type" refers to the
pattern type. The column ’T’ defines the contiguous chunks that are written
from memory to disk and vice versa. The value MpART is defined as max(2 MB,
memory o] one node / 128). The column "L" defines the contiguous chunk in
the memory. In case of pattern type (0), scattering is done by repeating to write
I bytes by each process to disk. In all other cases, the contiguous chunk handled
by each call to MPLWrite or MPI_Read is equivalent in memory and on disk.
This is denoted by ":=l" in the L column. U is a time unit.

Each pattern is benchmarked by repeating the pattern for a given amount of
time. This time is given by the allowed time for a whole partition (e.g., T--10
minutes) multiplied with U~ ~ U/3, as given in the table. This time-driven ap-
proach allows one to limit the total execution time. For the pattern types (3)
and (4) a fixed segment size must be computed before starting the pattern 
these types. Therefore, the time-driven approach is substituted by a size-driven
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[type l} L

0 1 MB 1MB 0
MpART :=/ 4

1 MB 2MB 4
1 MB 1MB 4
32 kB 1MB 2
1 kB 1MB 2

32 kB +8B 1 MB + 256B 2
lkB+8B’ 1MB+8kB 2

1 MB +8B 1MB + 8B!2
1 1 MB :=l 0

MpART :=/ 4
1 MB :=ll2
32 kB :=/ 1
1 kB :=1 1

1 continued
32 kB +8B :=l 1
1 kB +8B :=/ 1

1 MB +8B :=l 2
2 1 MB ¯ :=/!0

MPART :=lj 2
1 MB :=/ 2
32 kB :=11
1 kB :=/ 1

32 kB +8B :=l 1
1 kB +8B :=/ 1

1 MB +8B :=l 2
3 see type=2
4 see type=2

~U =64

Table 1. The pattern details used in b_effAo

approach, and the repeating factors are initialized based on the measurements
for types (0) to (2).

The b_eff_io value of one partition is defined as sum of all transferred
bytes divided by the total transfer time. If patterns do not need exactly the
ideal allowed time, then the average is weighted by the unit U. At minimum,
10 minutes must be used for benchmarking one partition. The b_effJo of a
system is defined as the maximum over any b_effAo of a single partition of the
system. This definition permits the user of the benchmark to freely choose the
usage aspects and enlarge the total filesize as desired. The minimum filesize is
given by the bandwidth for an initial write multiplied by 200 sec (= 10 minutes
/ 3 access methods). If a system complies with the rule that the total memory
can be written in 10 minutes for each access pattern, then one third of the
total memory is written by this benchmark, and in each single pattern with
U=I, one 1/192 of the memory is written. If all processors are used for this
benchmark, then the amount written by each node is not very much, but a call
to MPI_File_sync in each pattern should guarantee that that the data is really
written to disk.

5 Comparing Systems Using b_eff_io

In this section, we present a detailed analysis of each run of b_eff_io on a par-
tition. We test b_eff_io on two systems, the Cray T3E900-512 at HLRS/RUS in
Stuttgart and an RS 6000/SP system at LLNL called "blue." On the T3E, we
use the tmp-filesystem with 10 striped Raid-disks connected via a GigaRing for
the benchmark. The peak-performance of the aggregated parallel bandwidth of
this hardware configuration is about 300 MB/s. The LLNL results presented here
are for an SP system with 336 SMP nodes each with four 332 MHz processors.
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Fig. 1. Comparing the results for an optimal number of processes
Left: 32 PEs on the T3E900-512 at HLRS, b_eff_io = 71 MB/s
l~ight: 128 PEs on the "blue" RS 6000/SP at LLNL, b_eff_io = 311 MB/s
both measured with T = 10 min.
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Since the I/O performance on this system does not increase significantly with
the number of processors on a given node performing I/O, all test results assume
a single thread on a given node is doing the I/O. Thus, a 64 processor run means
64 nodes assigned to I/O, and no requested computation by the additional 64*3
processors. On the SP system, the data is written to the IBM General Parallel
File System (GPFS) called blue.llnl.gov:/g/gl which has 20 VSD I/O servers.
Recent results for this system show a maximum read performance of approxi-
mately 950MB/sec for a 128 node job, and a maximum write performance of
690MB/sec for 64 nodes [5]. 1 Note that these are the maximum values observed,
and performance degrades when the access pattern and/or the node number is
changed.

On both platforms, MPI-I/O is implemented with ROMIO but with differ-
ent device drivers. On the T3E, we have modified the MPI Release mpt.l.3.0.2,
by substituting the ROMIO/ADIO Unix filesystem driver routines for open-
ing, writing and reading files. The Posix routines were substituted by the asyn-
chronous counter part, directly followed by the the wait routine. This trick en-
ables parallel disk access [13]. On the RS 6000/SP blue machine, GPFS is used
underneath the MPICH version of MPI with ROMIO.

Figure 1 shows the results of one benchmark on each system, both scheduled
to run T = 10 minutes, during which time other applications were running on
the other processors of the systems. They demonstrate the main differences be-
tween both MPI and filesystem implementations, Based on the results in Fig. 2,
which we discuss later on, we decided to run the benchmark on the T3E on 32
processors and on the RS 6000/SP on 128 processors. The three diagrams in
each vertical plane of Fig. 1 show the bandwidth achieved for the three differ-
ent access methods: writing the file the first time, rewriting the same file, and
reading it. On each diagram, the bandwidth is plotted on a logarithmic scale,
separately for each pattern type and as a function of the chunk size. The chunk
size on disk is shown on a pseudo-logarithmic scale. The points labeled "+8" are
the non-wellformed counterparts of the power of two values.

Type 0 is a strided access, but the buffer used in each I/O-call is at least
1 MB. In the case of a chunk length less than 1 MB, the buffer contents must be
scattered to different places in the file. On the T3E, this pattern type is optimal,
except for chunks larger than 1 MB, where the initial write of segmented files is
faster. When non-wellformed chunk sizes are used, there is a substantial drop in
performance. Additional measurements show that this problem increases with
the total amount of data written to disk. On the RS 6000/SP, other pattern
types show higher bandwidth.

Type i writes the same data to disk, i.e., each process has the same logical
fileview, but MPLIO is called for each chunk separately. In the current bench-
mark, this test is done with individual filepointers, because the MPLI/O ROMIO
implementation on both systems does not have shared filepointers. As default,
b_eff_io measures this pattern type with shared pointers. On both platforms, this

1 Upgrades to the AIX operating system and underlying GPFS software may have

altered these performance numbers slightly between measurements in [5] and in the
current work.
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Fig. 2. Comparing b_effAo for different numbers of processes
Left: 64 PEs on the T3E900-512 at HLRS
Right: 128 PEs on the "blue" RS 6000/SP at LLNL
measured partially without type 3.

pattern type results in essentially the worst bandwidth for most access method
and chunk size.

Type 2 is the writing winner on RS 6000/SP. Each process writes a separate
file at the same time, i.e., parallel and independently. Type 3 writes the same,
but the files of all processes are concatenated. To guarantee wellformed starting
points for each process, the filesize of each process is rounded up to the next
MByte. Type 4 writes the same as type 3, but the access is done collectively. On
the T3E, we see that these three pattern types are consistently slow for small
buffer sizes and consistently fast for large buffer sizes. In contrast on the RS
6000/SP, type 3 and 4 are about a factor2 of 10-20 slower than type 2 for writing
files. For reading files, the diagram cannot show the real speed for type 3 and 4
due to three effects: The repetition factor is only one for chunk sizes of 1 MB
and more, the reading of the 8 MB chunk fills internal buffers, and currently, the
b_eff_io does not perform a file sync operation before reading a pattern. Looking
at the (non-weighted) average, one can see, that on the RS 6000/SP, reading the
segmented files is a factor of 2.5 slower than reading individual files.

Finally, one can say that on both systems, the read access is clearly faster
than the write access. On the T3E, the read access is 5 times faster than "first
write" and 2.7 faster than "rewrite". On the RS 6000/SP blue machine, the
read access is 10 times faster than both types of write access. The measurements
were done with b_effio Release 0.5 [10]. By default, it measures 10 minutes the
partition on which it was started, and 5 minutes the half partition.

All factors in this section are computed, based on weighted averages using the time
units U, if not stated else.
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Figure 2 shows the b_eff_io values for different partition sizes and different
values of T, the time that should be used for benchmarking one partition. All
measurements were taken in a non-dedicated mode. For the T3E, one can see,
that the maximum is reached at 32 application processes, but from 8 to 128
processors, there is only little variation. In general, an application only makes
I/O requests for a small fraction of the compute time. On large systems, such
as those at the High-Performance Computing Center at Stuttgart and the Com-
puting Center at Lawrence Livermore National Laboratory, several applications
are sharing the nodes, especially during prime time usage. In this situation, I/O
capabilities would not be requested by a significant proportion of the CPU’s at
the same time. "Hero" runs, where one application ties up the entire machine for
a single calculation are rarer and generally run during non-prime time. Such hero
runs can need the full I/O performance by all processors at the same time. The
right diagram shows that the RS 6000/SP fits more to the latter usage model.
Note that GPFS on the SP’s is configurable, i.e., number of I/O servers and
other tunables, and the performance on any given SP/GPFS system depends on
the configuration of that system.

Figure 2 also shows that on both systems, the results depend more on the
I/O usage of the other concurrently running applications on the system than on
the requested time T for each benchmark. Comparison of measurements with
T = 10 and 30 minutes have shown that the analysis reported in Fig. 1 may vary
in details. The differences between wellformed and non-wellformed I/O is more
notable with T---30 minuntes on the T3E.

Finally, we compare these results with other measurements. On the same RS
6000/SP, Posix read and write measurements ranging between 500 and 900 MB/s
are measured [5]. 3 The b_eff_io result is 311 MB/s in the presented measurement.
The result can be interpreted, that the MPI application programmer has a real
chance to get a significant part of the I/O capabilities of that system. On the
used T3E, the peak I/O-performance was about 300 MB/s. Also here, the b_eff_io
value of 71 MB/s shows, that on average, a quarter of the peak can be used by
normal MPI programming.

Our results show that the b_eff_io benchmark is a very fast method to analyze
the parallel I/O capabilities available for applications using the standardized
MPI-I/O programming interface. The resulting b_effAo value summarizes I/O
capabilities of a system in one significant I/O bandwidth value.

6 Outlook

It is planned, to use this benchmark to compare several systems. More investi-
gation is necessary in the problems arising from 32 bit integer limits and han-
dling read buffers in combination with file sync operations. Although [1] stated,
that "the majority of the request patterns are sequential", we should examine,
whether random access patterns can be included into the b_eff_io benchmark.

3 Again we note that upgrades to the AIX operating system and underlying GPFS
software may have slightly altered these performance numbers between measure-
ments.
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